

Energieentwicklungsplan für den Markt Hirschaid

Prof. Dr.-Ing. Markus BrautschDipl.-Ing. (FH) Thorsten Meierhofer

Institut für Energietechnik IfE GmbH an der Hochschule Amberg-Weiden Kaiser-Wilhelm-Ring 23 92224 Amberg

www.ifeam.de

Vorstellung Institut für Energietechnik IfE

- Jährlich ca. 120 kommunale Energiekonzepte / Klimaschutzkonzepte
- Jährlich ca. 50 Energieeffizienzkonzepte für Industrie, Gewerbe und Dienstleistung
- Wissenschaftliche Begleitforschung in Demonstrations- und Entwicklungsvorhaben
- Angewandte Forschung und Entwicklung
- Team aus 12 Wissenschaftlern und Ingenieuren
- Institutsleitung Prof. Dr.-Ing. Markus Brautsch
 - Studium der Technischen Physik in München
 - Promotion am Institut für Solare Energiesystem Technik 1997
 - Lehrstuhl Thermodynamik / Energieeffizienz / Erneuerbare Energien seit 1998
 - Gründung der Fakultät für Maschinenbau / Umwelttechnik / Erneuerbare Energien
 - Berufung in die Expertenkommission der Bay. Staatsregierung für Energietechnologie im Juni 2011

Auszug der Referenzen im Bereich Kommunale Energiekonzepte / Klimaschutzkonzepten

Markt Buchbach Gemeinde Otting

Stadt Bamberg

Stadt Greding (Klärgasnutzung)

Gemeinde Mühlhausen

Stadt Beilngries (Klärgasnutzung)

Gemeinde Bernaau

Stadt Kemnath

Klimaschutzkonzept Stadt Amberg

Klimaschutzkonzept Stadt Weiden

Klimaschutzkonzept Stadt Amberg

Klimaschutzkonzept Stadt Auerbach

Klimaschutzkonzept Landkreis Roth

Klimaschutzkonzept Stadt Greding

Klimschutzkonzept Stadt Geretsried

Klimaschutzkonzept AOVE Gemeinden

Klimaschutzkonzept Stadt Lauf

Klimaschutzkonzept Landkreis Neumarkt

Klimaschutzkonzept Stadt Würzburg

Klimaschutzkonzept Landkreis Eichstätt

Klimaschutzkonzept Markt Feucht in

Kooperation mit ETZ Nürnberg

Kepler Gymnasium Weiden

Deponie Weiden

Gemeinde Kindina

Altenheim Greding

Stadtwerke Eichstätt (Spitalvorstadt)

Bonn BMBF (Brennstoffzellennutzung)

Markt Kinding

Stadt Wendelstein

Gemeinde Windach

Stadtwerke Bamberg

Stadt Schnaittach

Gemeinde Röthenbach

Gemeinde Haibach

Gemeinde Berg

Stadt Geretsried (Klimaschutzkonzept)

Stadt Mühldorf am Inn

Gemeinde Trabitz

Gemeinde Schnaitsee

Stadt Scheinfeld

Stadt Forchheim

Gemeinde Knetzgau

Gemeinde Zeil am Main

Stadtwerke Traunstein

Pyras (Deponie-Photovoltaik)

Stadt Memmelsdorf

Stadt Traunstein

Gemeinde Auerbach

Gemeinde Hahnbach

Stadt Neumarkt

Stadt Trossingen

Stadt Grafenwöhr

Gemeinde Postbauer Heng

Markt Wiesau

Gemeinde Reuth

Gemeinde Fhnath

Landkreis Freising

Gemeinde Berg

Gemeinde Schnaitsee

Gemeinde Beilngries

Camerloher Gymnasium Freising

Gemeinde Kirchweidach

Gemeinde Waldershof

Fernwärme Bamberg

Stadt Bayreuth

Kirchliche Liegenschaften

Kolpinghotel Lambach
Kolpinghaus Cham
Kolpinghaus Regensburg
Musikhaus Kloster Ensdorf
Pfarrgemeinde St. Michael Amberg
St. Marien Schule Regensburg
Exerzitienhaus Johannisthal
Kloster Rebdorf
Pfarrgemeinde Sinzing
Kloster Plankstetten
Maristen-Realschule Cham
Pfarrgemeinde Gangkofen

Maristen-Realschule Cham
Pfarrgemeinde Gangkofen
Nerianer Stift Regensburg
Wallmenich Schwestern Amberg
Diözese Eichstätt (Klimaschutzkonzept)
Caritas Amberg
Caritas Eichstätt
Kloster Mallersdorf
Dekanat Lauf
Lebenshilfe Lauf
Dekanat Auerbach
Diözese Bamberg

Krankenhäuser

Klinik St. Anna Sulzbach- Rosenberg Klinikum Eichstätt Krankenhaus Eschenbach Krankenhaus Neustadt a.d. Waldnaab Krankenhaus Vohenstrauß Klinikum Weiden Krankenhaus Kemnath St. Marien Klinik Amberg Krankenhaus Waldsassen Krankenhaus Tirschenreuth Steinwald Klinik Erbendorf

Vereine / Sonstiges

VHS Amberg- Sulzbach LCC Alpenhof Hindelang Seehaus Fichtelgebirge Riemann Haus DAV Weidener Hütte DAV Glorer Hütte DAV Tegernseer Hütte DAV Sudetendeutsche Hütte des DAV Studentenwohnheim Ambera Studentenwohnheim Weiden Kurhaus Wöhrder Wiese Nürnberg Sportzentrum Rothenstadt Studentenwohnheim Cobura Heilpädagogisches Zentrum Amberg Heilpädagogisches Zentrum Irchenrieth Studentenwohnheim Weiden

Betriebe

Grammer AG Amberg Betriebshof Stadt Amberg Müller Porzellan Schönacher Neuburg a.D. Ernst Vögel GmbH Guttenberger & Partner GmbH Freystadt Suspa Compart GmbH Sulzbach Rosenberg BBL- Oberflächentechnik GmbH Roth Arbogast Bauunternehmen Amberg Hotel Allgäu Stern Sonthofen Rohrwerk Maxhütte Sulzbach Rosenberg **BHS- Corrugated Weiherhammer** Brauerei Bruckmüller Amberg Domspitzmilch Amberg Klingele Papierwerke Hilpoltstein Zapf Weidenberg Fürst Wallerstein Speck Pumpen Roth Kaiserhof Abenberg **EMUGE Lauf**

Takeo Gmbh Dietfurt a.d. Altmühl Auto Sieal Unterdolling Systec Karlstadt Adelmann Karlstadt Autohaus Bögl Neumarkt i.d. Opf. Brauerei Kundmüller Viereth-Trunstadt Nutrichem Roth JK Industrielackierungen Weißenburg Flexipack Baar Ebenhausen Sporthotel Neuburg-Rödenhof Metallbau Haslinger Aldersbach-Uttigkofen Fila Lackierungen Wernberg-Köblitz Siemens AG Medical Solution Kemnath Meier Betonwerke GmbH Lauterhofen Chema Prozess- und Systemtechnik Arnstadt Fila Industrielackierungen Wernberg-Köhlitz Smurfit Kappa Neuburg a.d. Donau Wipag Gmbh Neuburg a.d. Donau

Industriegebiet Nord Amberg Kerb Konus Vetrtriebs Gmbh Amberg Werkvolk eG Amberg Klebl GmbH Neumarkt i.d.Opf. Kurz Prägefolien Sulzbach-Rosenberg Lackiererei Sänger Mainburg Fischer Automobile GmbH & Co. KG Ursensollen Thimm Verpackungs GmbH & Co. KG Northeim Herding GmbH Amberg **Huber SE Berching** Luitpoldhütte AG Ambera KSB Pumpen Pegnitz Michelin Bamberg-Hallstadt Robert Bosch GmbH Bamberg Willner Fahrradzentrum Ingolstadt WELCO GmbH & Co. KG Bruck i. d. Opf. Orth-Bräu GmbH & Co. KG Sulzbach Rosenbera Kochendörfer Wasserkraftanlagen Georgenberg

7eitlauf

Sembach Könitzer

Demonstrations- und Entwicklungsvorhaben

- Energiebilanzierung
- Nutzungsgradbetrachtungen
- Anlagen- und Betriebskostenoptimierung
- Emissionsoptimierung
- Technische Dokumentation und Demonstration
- Inbetriebnahmemessungen

Bayerischer Energiepreis 2008

EON Umweltpreis 2009

Bayerischer Energiepreis 2010

Wissenschaftlich-messtechnische Begleitforschung von Demonstrations- und Entwicklungsvorhaben im mehrjährigen Versuchsbetrieb

Demonstration vernetzter Dampf-, Strom-, Druckluft- und Kälteproduktion zur Effizienzsteigerung in der BHS Corrugated GmbH in Weiherhammer, Laufzeit 2007 – 2010,

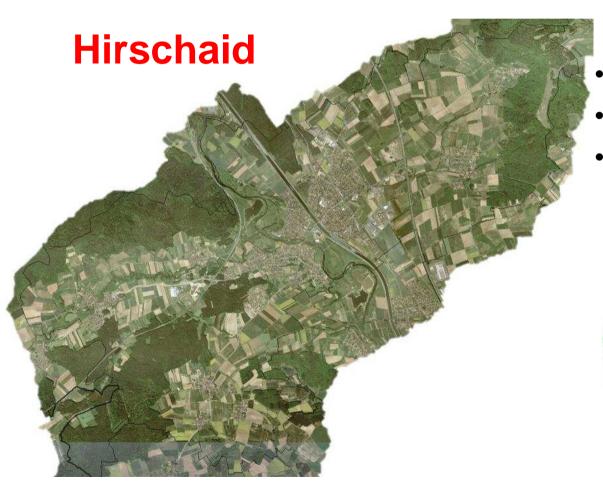
Gefördert vom Bayerischen Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie

Errichtung, Erprobung und Optimierung eines ganzheitlich vernetzten thermischen Ringleitungsnetzes in der **Grammer AG in Hasemühl,** Laufzeit 2006 – 2009,

Gefördert vom Bayerischen Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie

Effiziente Vernetzung innovativer Strom- und Wärmeproduktion in kommunalen Liegenschaften, Stadt Eschenbach i. d. Opf.

Gefördert vom Bayerischen Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie, Laufzeit 2008-2010


Inhaltsübersicht des Energieentwicklungsplanes:

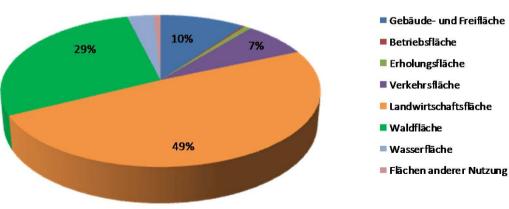
- 1. Allgemeine Daten zum Betrachtungsgebiet mit Erfassung der energetischen Ausgangssituation
- 2. Die Potentiale an Erneuerbaren Energien im Gemeindegebiet
- 3. Erstellung eines Wärmekatasters im Gemeindegebiet
- 4. Ausarbeitung von potentiellen Wärmeverbundmöglichkeiten mit entsprechenden thermischen Jahresdauerlinien
- 5. Wirtschaftlichkeitsbetrachtung verschiedener Energieversorgungsvarianten
- 6. CO₂- Bilanz / Fördermöglichkeiten
- 7. Zusammenfassung

Allgemeine Daten zum Betrachtungsgebiet

Das Betrachtungsgebiet

Einwohner: 11.756 (Stand Juni 2011)

Im Betrachtungsgebiet ca. 287 EW/km²

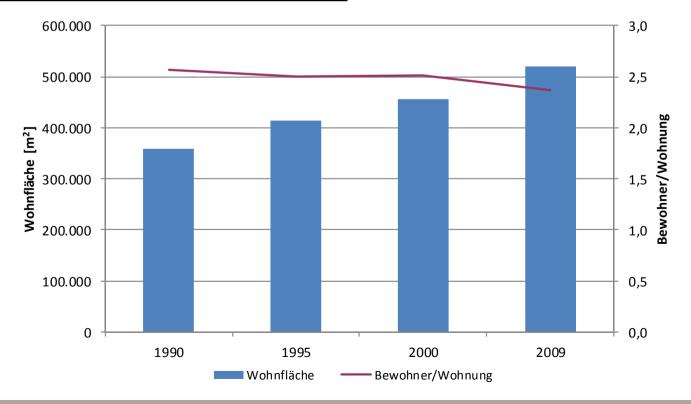

(Durchschnitt Bayern: 180 EW/km²)

ca. 3.050 Wohngebäude

ca. 520.000 m² Wohnfläche

Gebietsfläche: gesamt ca. 4.100 ha

Nutzungsart der Gebietsfläche



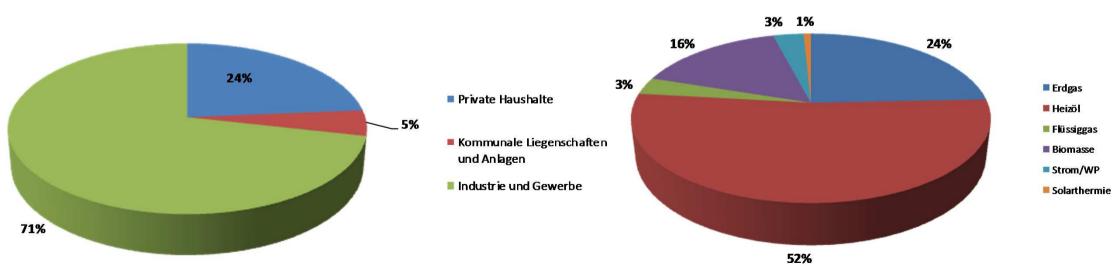
Allgemeine Daten zur Wohnungssituation

	1990	1995	2000	2009
Wohngebäude	2358	2581	2741	3.048
Einwohner	9.000	10100	11.142	11.669
Wohnungen in Wohngebäuden	3503	4030	4438	4.930
Wohnungen/Wohngebäude	1,5	1,6	1,6	1,6
Wohnfläche in Wohn-Nichtwohngebäuden ges. [m²]	359.745	413.613	456.944	520.795
Wohnfläche/Wohngebäude [m²]	103	103	103	106
Einwohner/Wohnung	2,6	2,5	2,5	2,4
Wohnfläche/Einwohner [m²]	40	41	41	45

- → ca. 70 % der Wohnfläche und ca. 77 % der Wohngebäude aus Bestand vor 1990
- → tendenziell immer kleinere Haushalte

Erfassung der energetischen Ausgangssituation

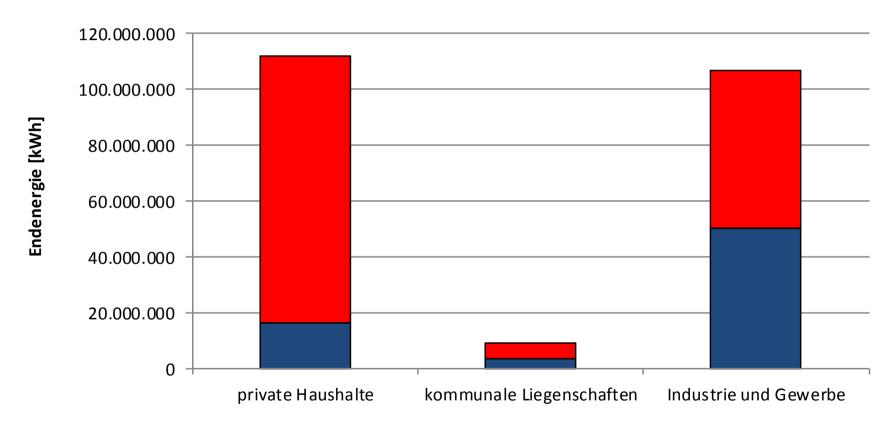
- Umfassende Aufnahme des Energieverbrauchs im Ist-Zustand
- Einteilung nach Verbrauchergruppen:
 - → private Haushalte
 - → kommunale Liegenschaften
 - → Industrie / Gewerbe
- Erfassung aller leitungs- und nicht-leitungsgebundenen Energieträger
- Datengrundlage: → Netzabsatzdaten des Energieversorgers E-ON Bayern
 - → installierte Kesselleistungen von den zuständigen Kaminkehrern
 - → zusätzliche Hochrechnung des Wärmebedarfs der Wohnfläche über die Gebäudealtersstruktur



Erfassung der energetischen Ausgangssituation

	Endenergie elektrisch [kWh]	Endenergie thermisch [kWh]
private Haushalte	16.700.000	95.190.000
kommunale Liegenschaften	3.400.000	5.940.000
Industrie und Gewerbe	50.430.000	56.180.000
Summe	70.530.000	157.310.000

Elektrischer Energieverbrauch nach Verbrauchergruppen


Anteile Energieträger an thermischer Energieversorgung

Der Endenergiebedarf in den einzelnen Verbrauchergruppen

Zusammenfassung

■ Endenergie elektrisch

■ Endenergie thermisch

Der Anteil bereits genutzter Erneuerbarer Energien

- Photovoltaik:

Installierte Leistung: 3,9 MWp

→ ca. 3.520 MWhel/a

- Biogas (2 Anlage):

Installierte Leistung: 615 kW

→ ca. 2.950 MWhel/a

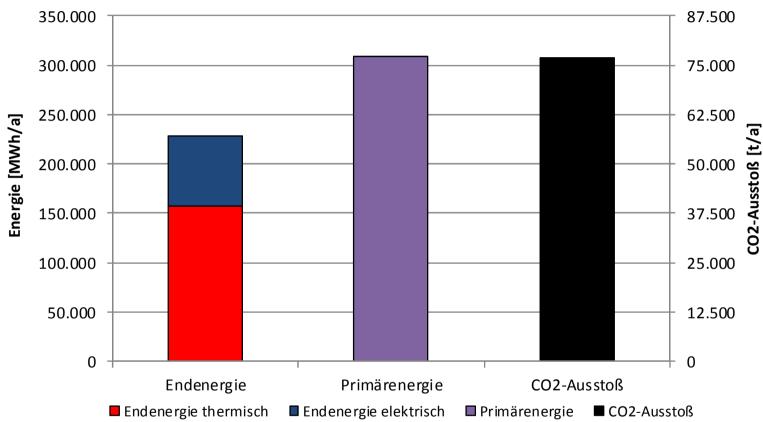
→ ca. 3.740 MWhth/a

(Potential, aktuell nur teilweise Wärmenutzung)

- Biomasse (Energieholz, etc.)

→ ca. 24.950 MWhth/a

- Solarthermie


ca. 3.260 m² Kollektorfläche

→ ca. 1.230 MWhth/a

<u>Datenquelle:</u> E-ON Einspeiser nach EEG; Solarthermie nach BAFA; Biomasse über Kesselleistung Stand 05/2011

Zusammenfassung der energetischen Ausgangssituation

ca. 309.000 MWh pro Jahr an Primärenergieaufwand

Anteil EE im Ist-Zustand: elektrisch rund 9 % - thermisch rund 17 %

Inhaltsübersicht

- 1. Allgemeine Daten zum Betrachtungsgebiet mit Erfassung der energetischen Ausgangssituation
- 2. Die Potentiale an Erneuerbaren Energien im Gemeindegebiet
- 3. Erstellung eines Wärmekatasters im Gemeindegebiet
- 4. Ausarbeitung von potentiellen Wärmeverbundmöglichkeiten mit entsprechenden thermischen Jahresdauerlinien
- 5. Wirtschaftlichkeitsbetrachtung verschiedener Energieversorgungsvarianten
- 6. CO₂- Bilanz / Fördermöglichkeiten
- 7. Zusammenfassung

- Photovoltaik und Solarthermie

Aufdachanlagen

- Für die solare Nutzung wird eine potentielle Modulfläche von ca. 148.400 m² auf Wohn- und Nichtwohngebäuden kalkuliert

Solarthermie	Gesamtpotential [MWh _{th} /a]	Photovoltaik	Gesamtpotential [MWh _{el} /a]
Solarthermiepotential für Bereitstellung von 60% des WW-Wärmebedarfs	4.000	Photovoltaikpotential aller geeigneter Dachflächen nach Solarthermienutzung	16.250
		Photovoltaikpotential für 60 % aller geeigneter Dachflächen nach Solarthermienutzung	9.750

Freiflächen-PV-Anlagen

Berücksichtigung der möglichen Anlage auf der ehemaligen Hausmülldeponie: ca. 760 MWhel/a

- Windkraft

Nach derzeitigem technischen Stand und der Überarbeitung des Regionalplanes sind im Gemeindegebiet keine Vorranggebiete vorhanden, die für den wirtschaftlichen Betrieb einer Windkraftanlage geeignet sind.

Annahme: langfristig und unter Verbesserung der Technik kann **eine Anlage** installiert werden Leistungsklasse: 2,3 MW; 138 m Nabenhöhe

Darstellung des Potentials:

Jährliche Stromproduktion der Anlage: ca. 4.000 MWh

Entspricht knapp ein Viertel des Stromverbrauchs aller privaten Haushalte in Hirschaid!

- Waldfläche

Energiebereitstellung	MWh/a	
Nachwuchs auf gesamter Waldfläche (rund 1.170 ha Waldfläche)	30.800	
Brennholz (Waldrestholz, Durchforstung) Sägenebenprodukte/Industrieholz	15.400	
Landschaftspflegeholz	710	
Altholz	2.260	
Summe nutzbares Potential	18.370	MWh/a

→ entspricht 50% des Gesamtnachwuchses

		Markt
		Hirschaid
Waldfläche	[ha]	1.170
jährlicher Zuwachs	[Fm/ha]	10
potentielles Energieholz	[Tonnen _{atro} /a]	2.940
Heizwert	[MWh/a]	15.400

- Biogasnutzung in BHKW

Nutzung von 25 % der landwirtschaftlichen Nutzfläche

gesamte landwirtschaftliche Fläche: 2.016 ha → rund 500 ha für Energiepflanzen

Substrat	Biogasertrag [m³/ha]	Nutzungsanteil aufgrund Fruchtfolge	Ø Biogasertrag [m³/ha]
Maissilage	8.000	60%	4.800
Roggen GPS	3.730	20%	746
Grassilage	5.450	20%	1.090
Summe			6.636

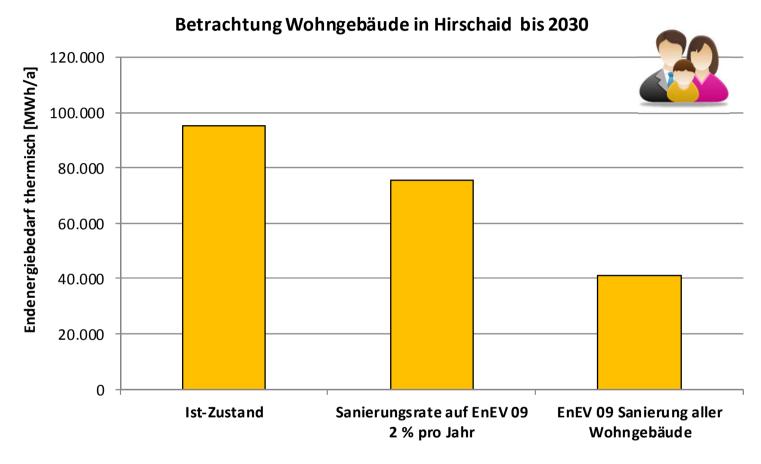
+ zusätzliche Nutzung von 60 % des Gesamt-Gülleanfalls

Gesamtpotential bei Biogasnutzung im BHKW:

→ ca. 9.100 MWh th /a

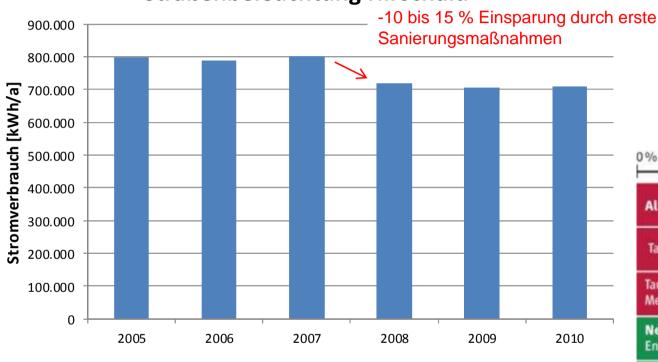
→ ca. 7.200 MWh el/a bei ca. 960 kW installierter elektrischer Leistung

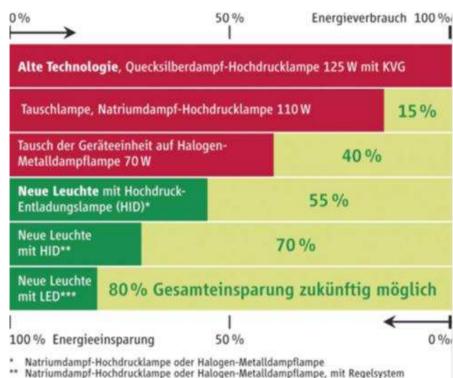
- Zusammenfassung


		Bestand		Gesamtpotential		Ausbaupotential	
Potential Erneuerbare	r Energien	Endenergie elektrisch [MWh/a]	Endenergie thermisch [MWh/a]	Endenergie elektrisch [MWh/a]	Endenergie thermisch [MWh/a]	elektrisch	Endenergie thermisch [MWh/a]
Photovoltaik	60% der geeigneten Fläche	3.519		9.750		6.231	
Freiflächen-PV	Fläche "Hausmülldeponie"	0		760		760	
Solarthermie	60% WW-Deckung		1.230		4.000		2.770
Wind	1 Anlage gesamt	0		4.000		4.000	
Biomasse *	Wald/Altholz/Nebenprod.	0	24.950	0	18.370	0	0
Biogas	25% landw. Nutzfläche, Gülle	2.950	3.740	7.193	9.109	4.243	5.369
Wasserkraft	nur Bestandsanlagen	140		140		0	
Summe		6.609	29.920	21.843	31.479	15.234	8.139

Durch das Ausschöpfen der noch vorhandenen Potentiale an EE können jährlich zusätzlich rund 11.200 Tonnen an CO₂ – Ausstoß vermieden werden !

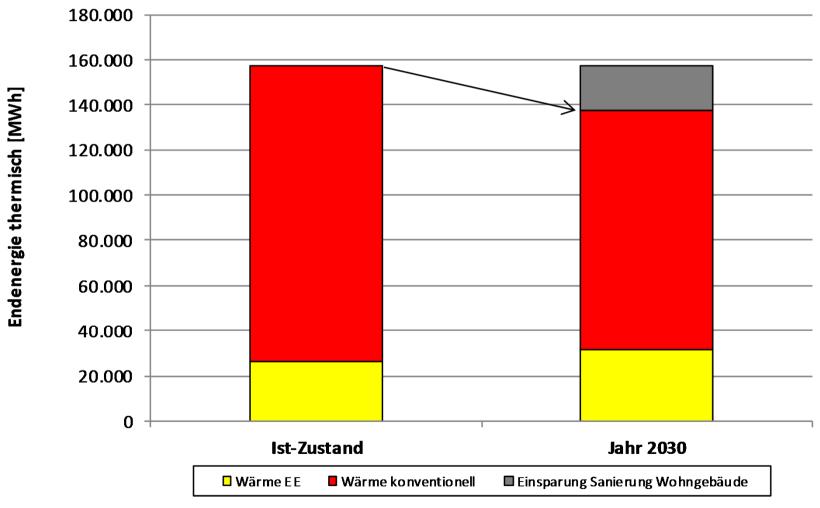
Potential Gebäudesanierung im Bereich Wohngebäude


Endenergieeinsparung (Sanierungsrate 2%) Endenergieeinsparung (gesamt auf EnEV 2009) CO₂- Einsparung bei derzeitigem Energiemix:


- -> rund 19.800 MWh/a bzw. 21%
- -> rund 54.400 MWh/a bzw. 57%
- -> rund 4.950 bzw. 13.600 to/Jahr

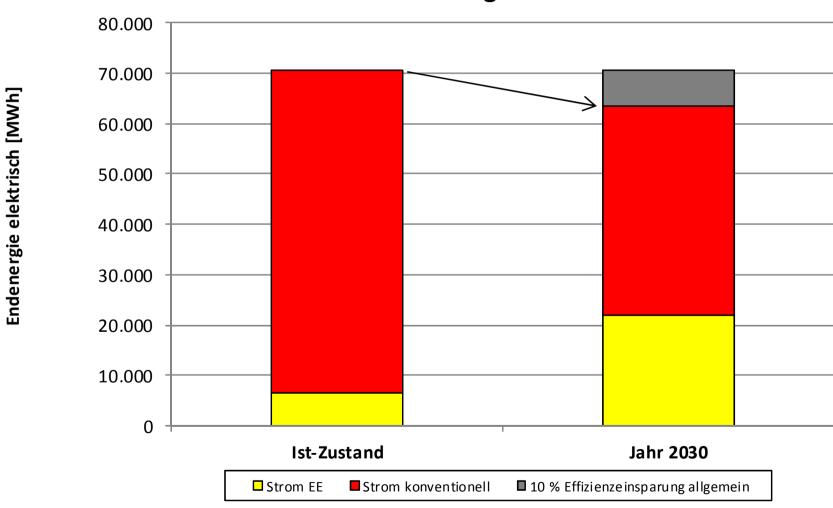
Potentiale bei der Straßenbeleuchtung

Straßenbeleuchtung Hirschaid

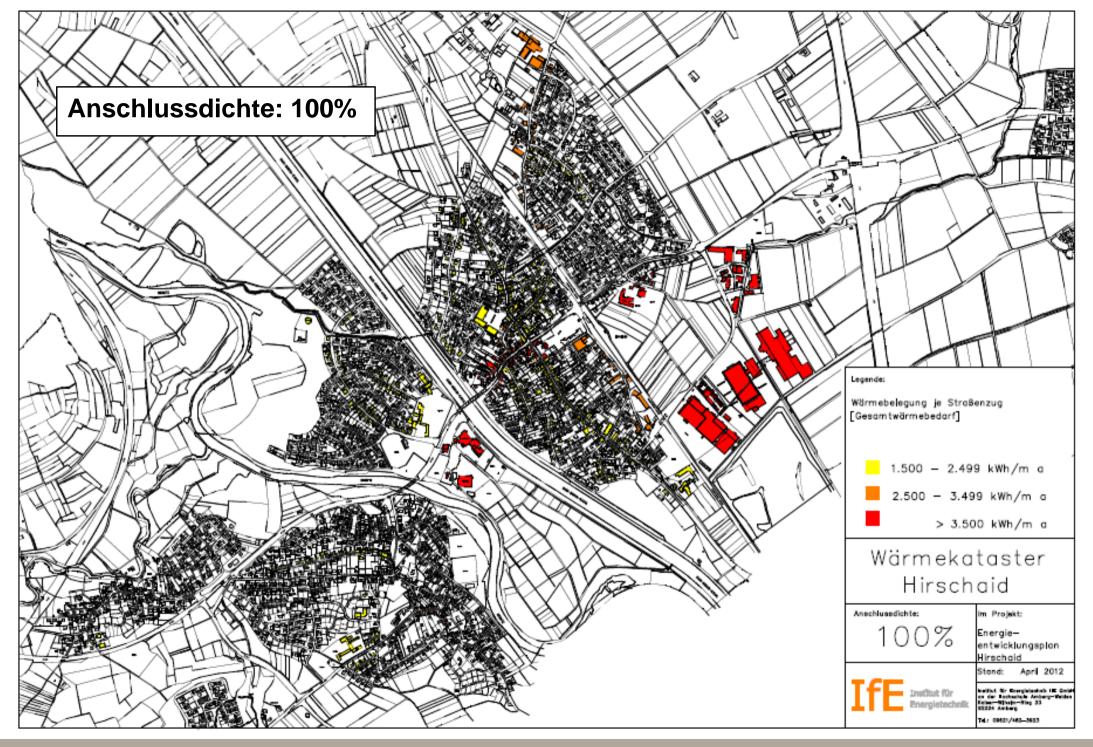

und 50 % Leistung während 2.000 Std.

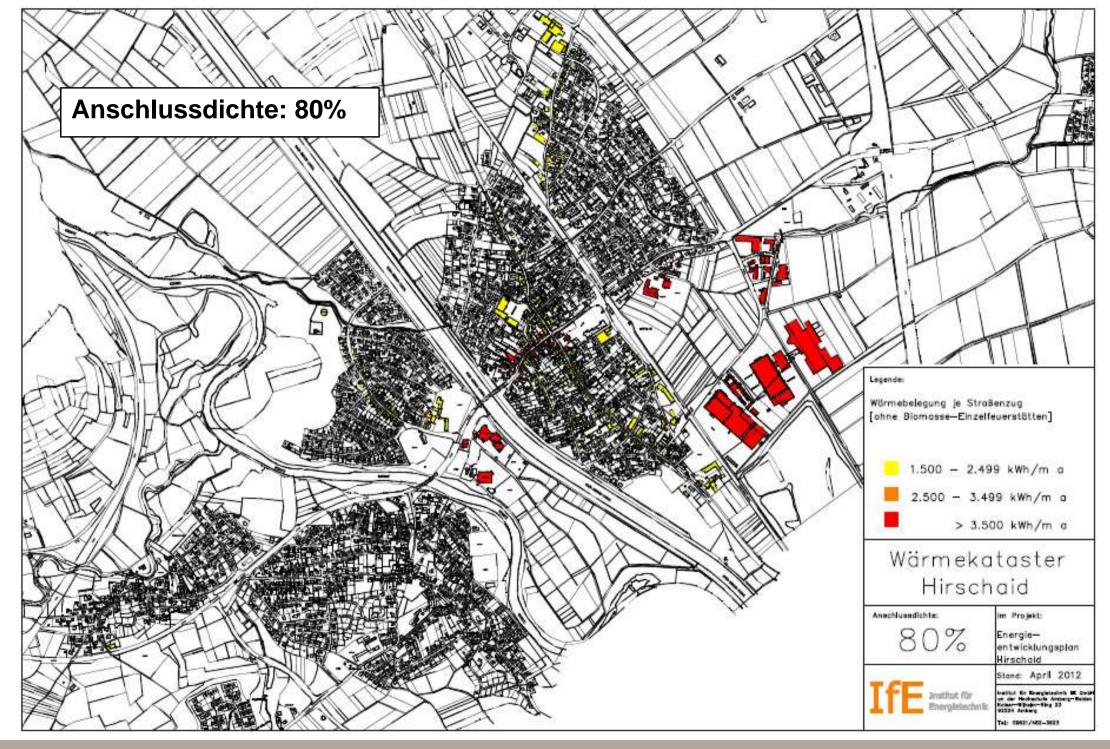
*** Mit Regelsystem und 50% Leistung während 2.000 Std.

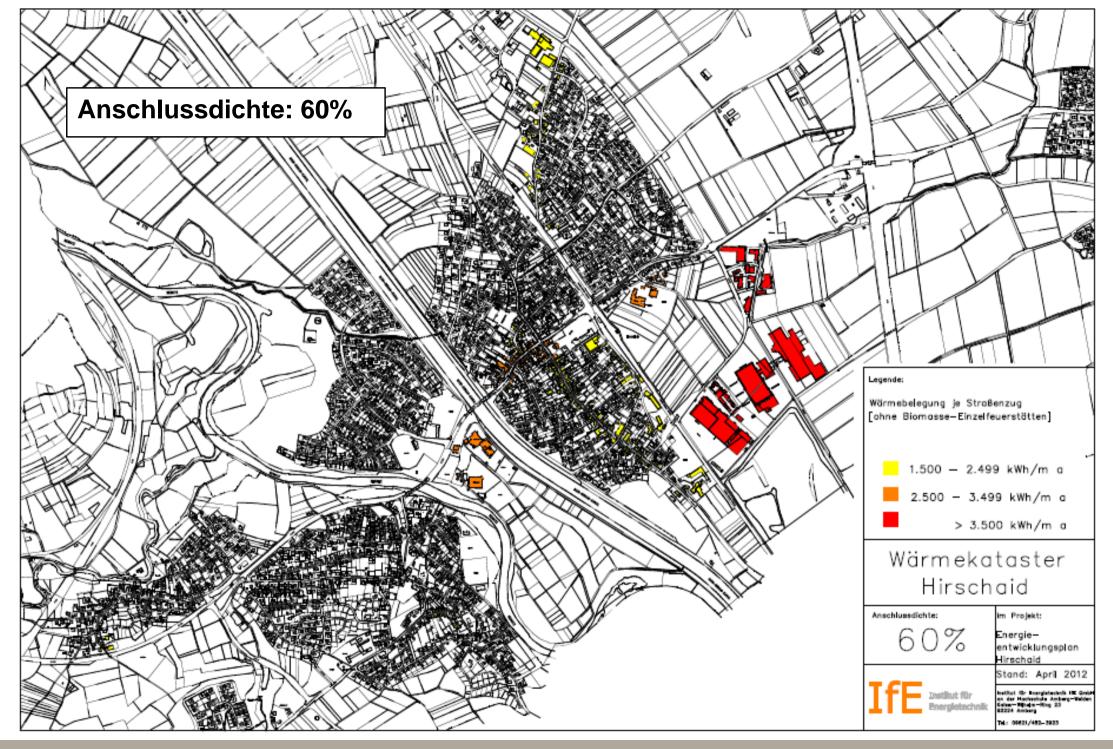
Gegenüberstellung Ausgangszustand - Potentiale


thermischer Endenergieverbrauch

Gegenüberstellung Ausgangszustand - Potentiale


elektrischer Endenergieverbrauch



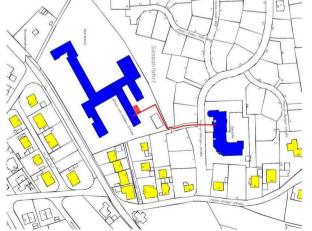


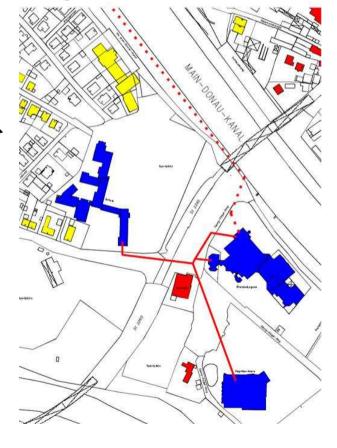
Inhaltsübersicht

- 1. Allgemeine Daten zum Betrachtungsgebiet mit Erfassung der energetischen Ausgangssituation
- 2. Die Potentiale an Erneuerbaren Energien im Gemeindegebiet
- 3. Erstellung eines Wärmekatasters im Gemeindegebiet
- 4. Ausarbeitung von potentiellen Wärmeverbundmöglichkeiten mit entsprechenden thermischen Jahresdauerlinien
- 5. Wirtschaftlichkeitsbetrachtung verschiedener Energieversorgungsvarianten
- 6. CO₂- Bilanz / Fördermöglichkeiten
- 7. Zusammenfassung

Inhaltsübersicht

- 1. Allgemeine Daten zum Betrachtungsgebiet mit Erfassung der energetischen Ausgangssituation
- 2. Die Potentiale an Erneuerbaren Energien im Gemeindegebiet
- 3. Erstellung eines Wärmekatasters im Gemeindegebiet
- 4. Ausarbeitung von potentiellen Wärmeverbundmöglichkeiten mit entsprechenden thermischen Jahresdauerlinien
- 5. Wirtschaftlichkeitsbetrachtung verschiedener Energieversorgungsvarianten
- 6. CO₂- Bilanz / Fördermöglichkeiten
- 7. Zusammenfassung

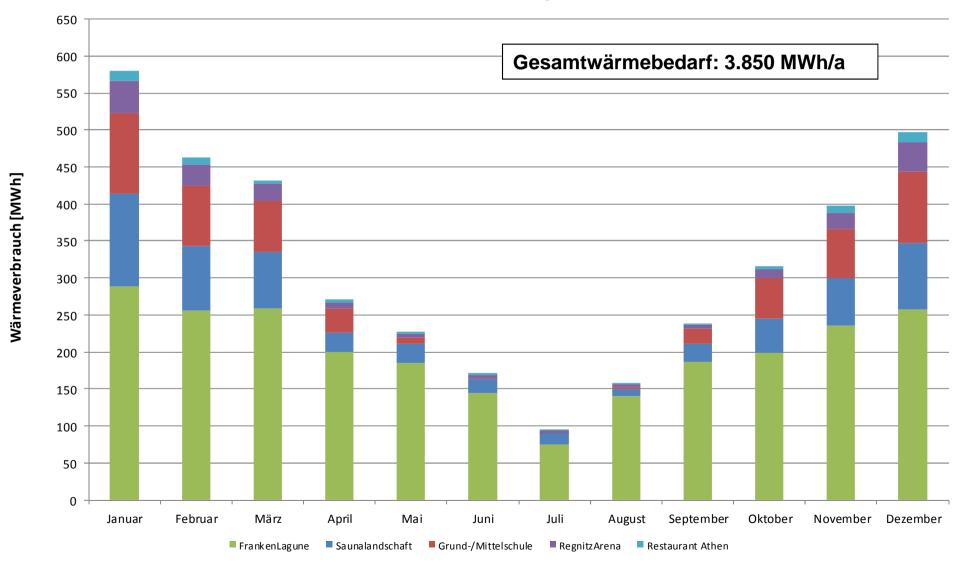

Wärmeverbrauchsschwerpunkte / Verbundmöglichkeiten / Energieversorgungsvarianten


In Abstimmung mit dem Markt Hirschaid erfolgt eine Detailbetrachtung des

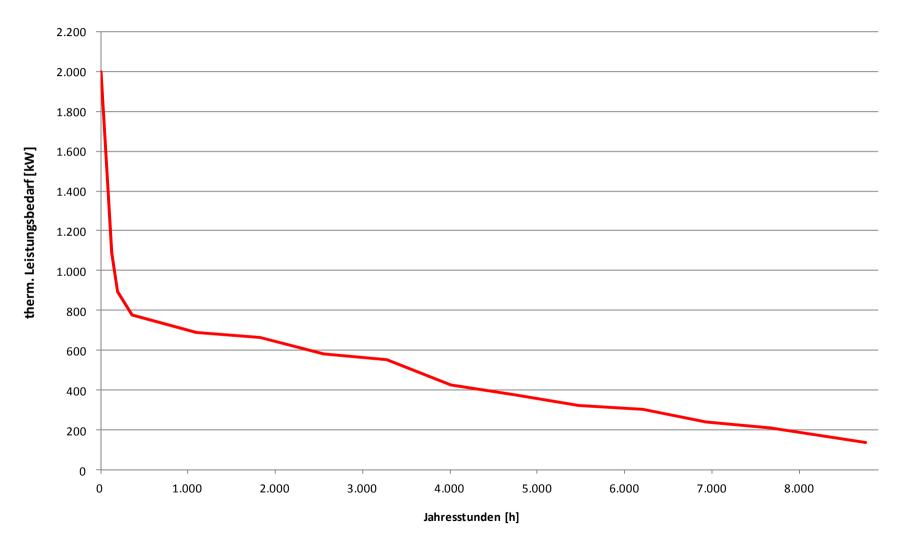
Wärmeverbundes "Frankenlagune" mit den Abnehmern:

- Frankenlagune
- Saunalandschaft
- Gaststätte Athen
- Regnitz Arena
- Grund- und Mittelschule Hirschaid

sowie eine Betrachtung der Julius-von-Soden-Schule in Sassanfahrt in Verbindung mit dem Seniorenheim SeniVita.



Der monatliche Wärmeverbrauch der Abnehmer als Grundlage für die Dimensionierung der Varianten 1.x


Wärmeverbund "Frankenlagune"

Die Ausarbeitung der geordnete Jahresdauerlinien als Grundlage für die Dimensionierung der Varianten 1.x

Wärmeverbund "Frankenlagune"

Die betrachteten Energieversorgungsvarianten 1.x

Wärmeverbund "Frankenlagune"

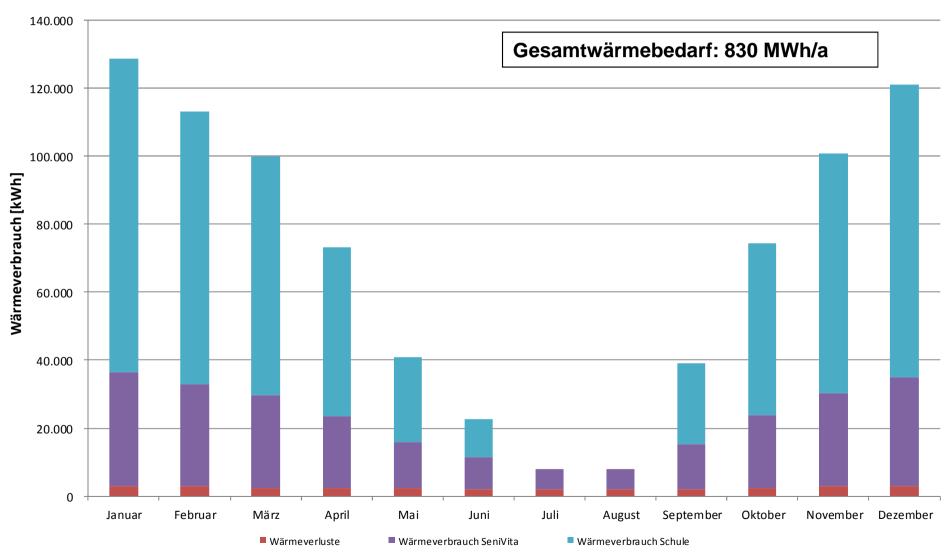
Möglichkeit der Nutzung lokaler Ressourcen:

 - Anbindung an die Biogasanlage in Strullendorf über eine Wärmeleitung (sinnvolles Wärmenutzungskonzept für Überschusswärme der bestehenden Biogasanlage)

Variante 1.0: Referenzvariante mit Contracting wie im Ist-Zustand

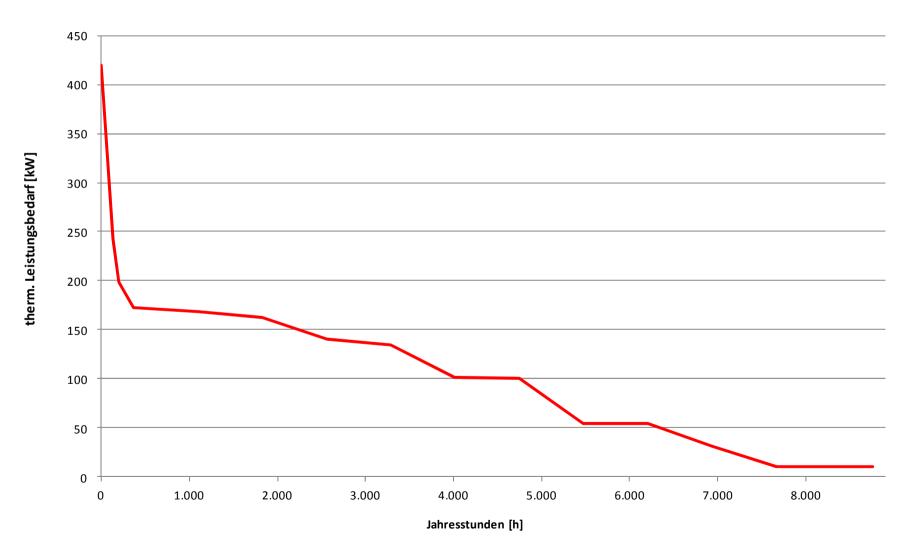
Variante 1.1: Erdgas- BHKW mit Eigenstromnutzung und Erdgas-Spitzenlastkessel

Variante 1.2: Biomethan- BHKW im Netzparallelbetrieb nach EEG und Erdgas-Spitzenlastkessel


Variante 1.3: Hackgutheizwerk und Erdgas-Spitzenlastkessel

Variante 1.4: Wärmeabnahme aus Biogasanlage und Erdgas-Spitzenlastkessel

Der monatliche Wärmeverbrauch der Abnehmer als Grundlage für die Dimensionierung der Varianten 2.x


Wärmeverbund "Schule Sassanfahrt"

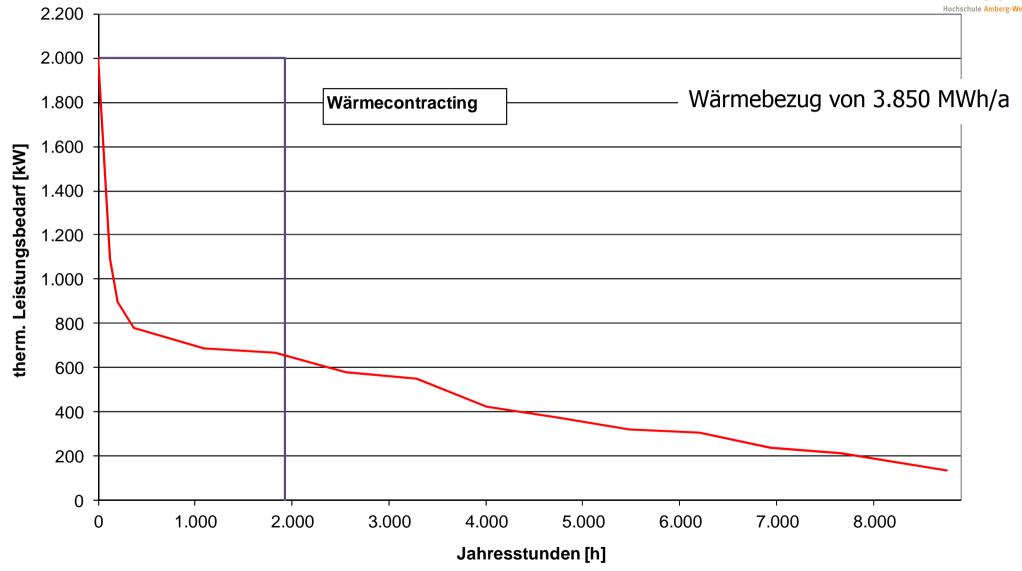
Die Ausarbeitung der geordnete Jahresdauerlinien als Grundlage für die Dimensionierung der Varianten 2.x

Wärmeverbund "Schule Sassanfahrt"

Die betrachteten Energieversorgungsvarianten 2.x

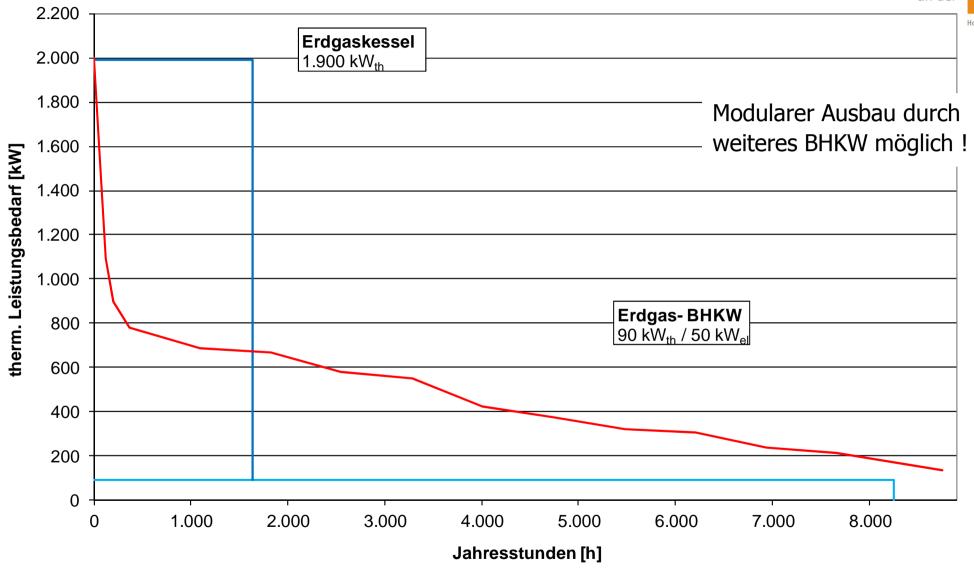
Wärmeverbund "Schule Sassanfahrt"

Variante 2.0: Referenzvariante mit dezentralen Erdgaskesseln wie im Ist-Zustand

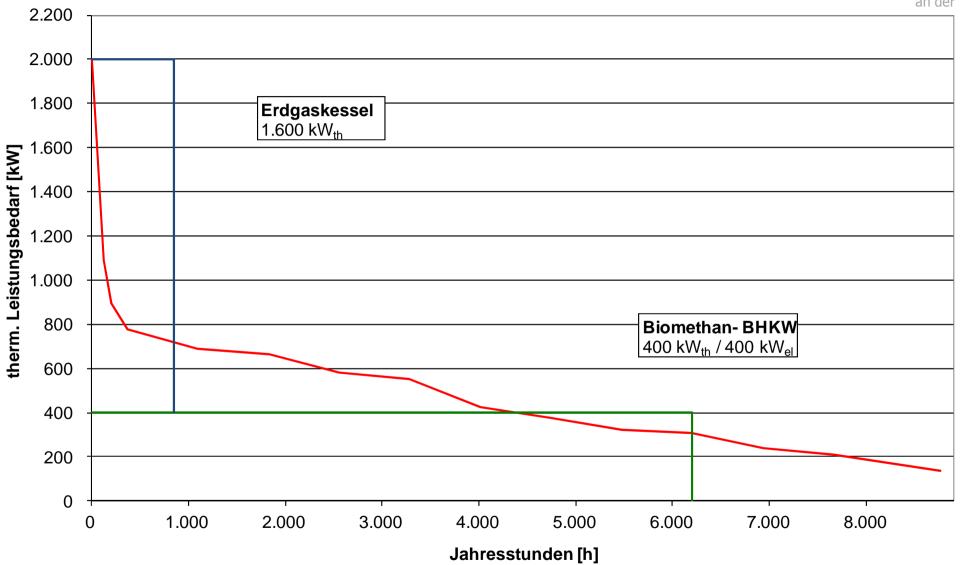

Variante 2.1: Erdgas- BHKW mit Eigenstromnutzung im SeniVita und Erdgas-Spitzenlastkessel

Variante 2.2: Biomethan- BHKW im Netzparallelbetrieb nach EEG und Erdgas-Spitzenlastkessel

Variante 2.3: Pelletkessel und Erdgas-Spitzenlastkessel

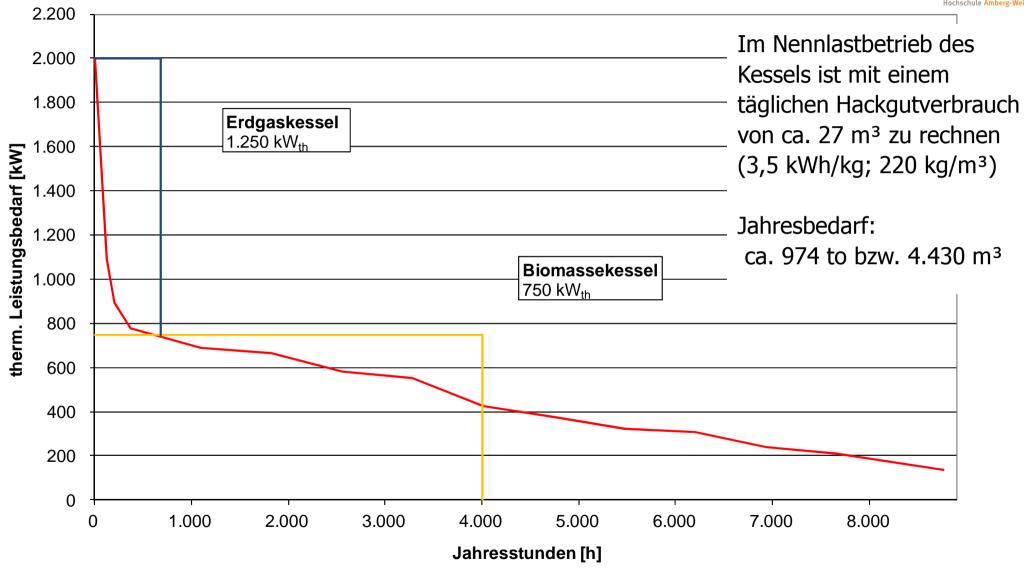

Variante 1.0 – Referenzvariante im Contracting

Variante 1.1 – Erdgas- BHKW im Grundlastbetrieb

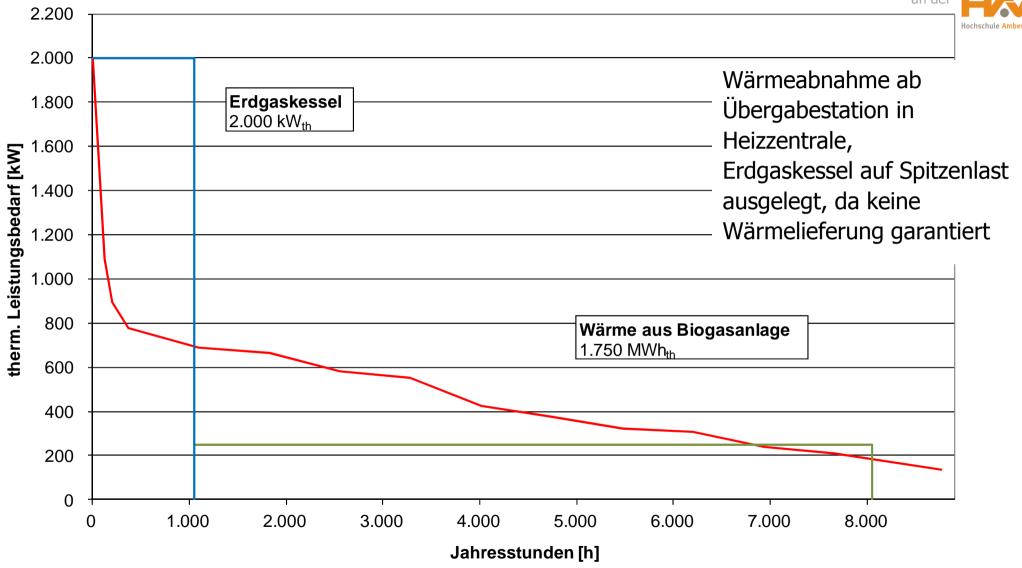


bereitgestellte elektrische Energie durch das Erdgas- BHKW: 452.500 kWh/a Eigennutzungsanteil ca. 85 % in Frankenlagune

Variante 1.2 – Biomethan- BHKW im Grundlastbetrieb



bereitgestellte elektrische Energie durch das Biomethan- BHKW: 2.480.000 kWh/a


Variante 1.3 – Hackschnitzelheizwerk zur Grundversorgung

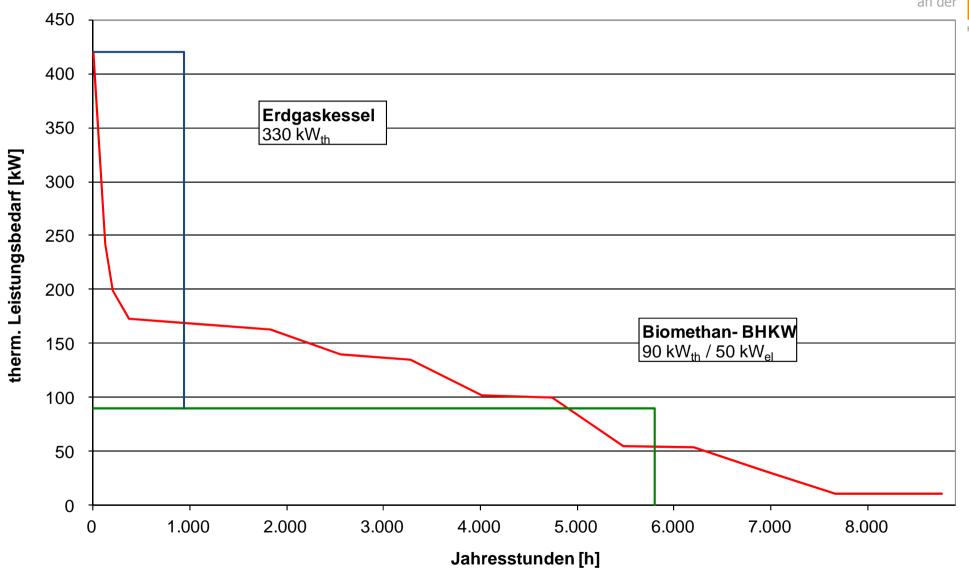
Variante 1.4 – Wärmeabnahme aus Biogasanlage



Betrieb der Bestands-BHKW (3x 330 kWel) in Biogasanlage durch Biogasanlagenbetreiber; Errichtung Wärmeleitung durch Markt Hirschaid; Wärmeabnahme ab Heizzentrale

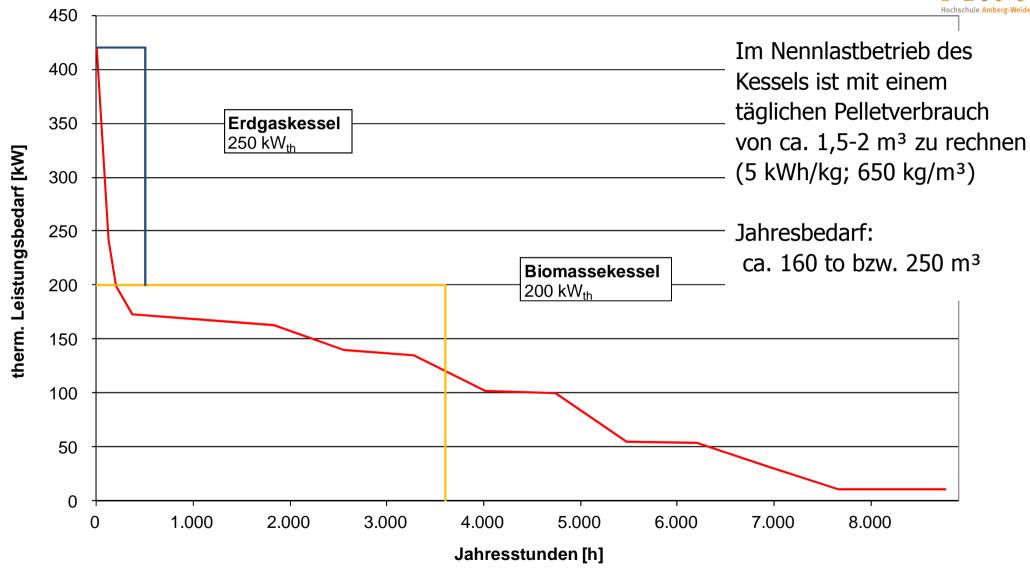
Variante 2.0 – Referenzvariante mit dezentralen Erdgaskesseln

Variante 2.1 – Erdgas- BHKW im Grundlastbetrieb



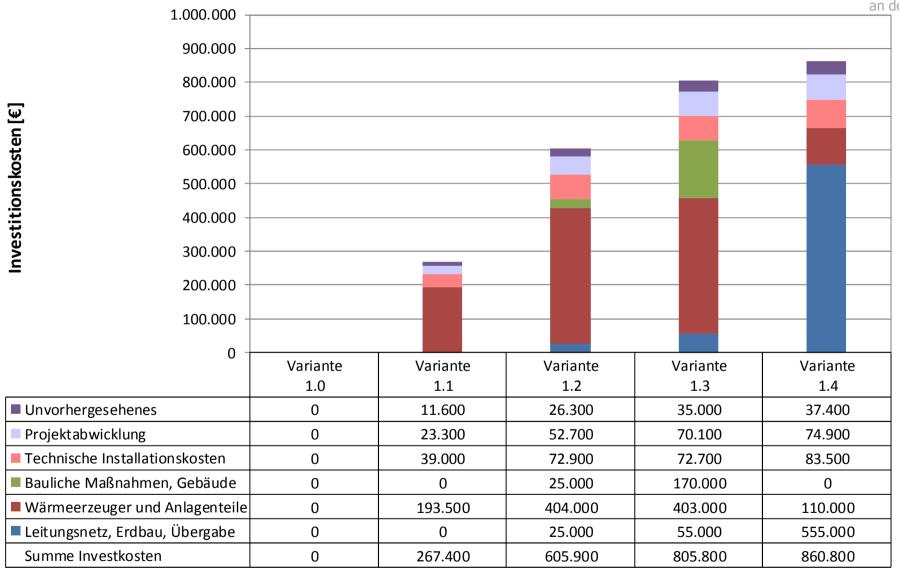
bereitgestellte elektrische Energie durch das Erdgas- BHKW: 140.000 kWh/a Eigennutzungsanteil ca. 85 % in SeniVita

Variante 2.2 – Biomethan- BHKW im Grundlastbetrieb



bereitgestellte elektrische Energie durch das Biomethan- BHKW: 290.000 kWh/a

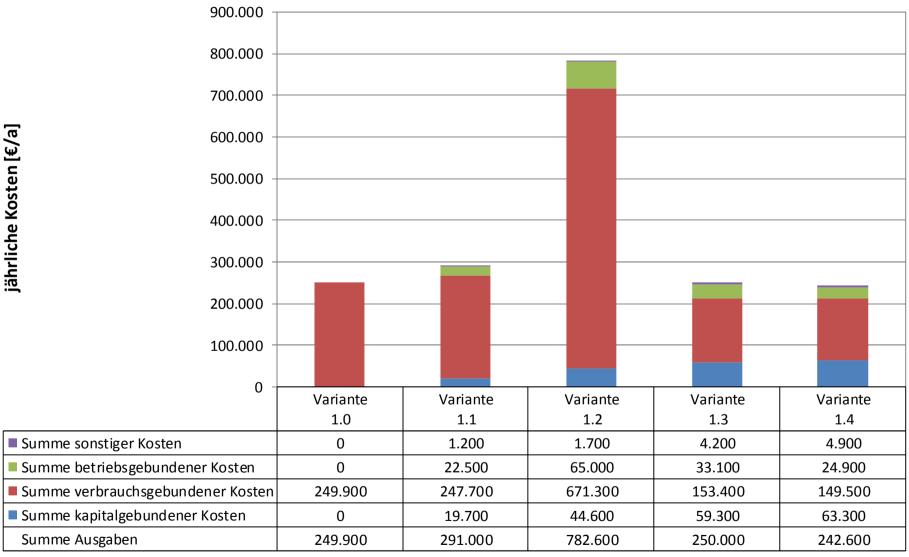
Variante 2.3 – Pelletkessel zur Hauptversorgung



Inhaltsübersicht

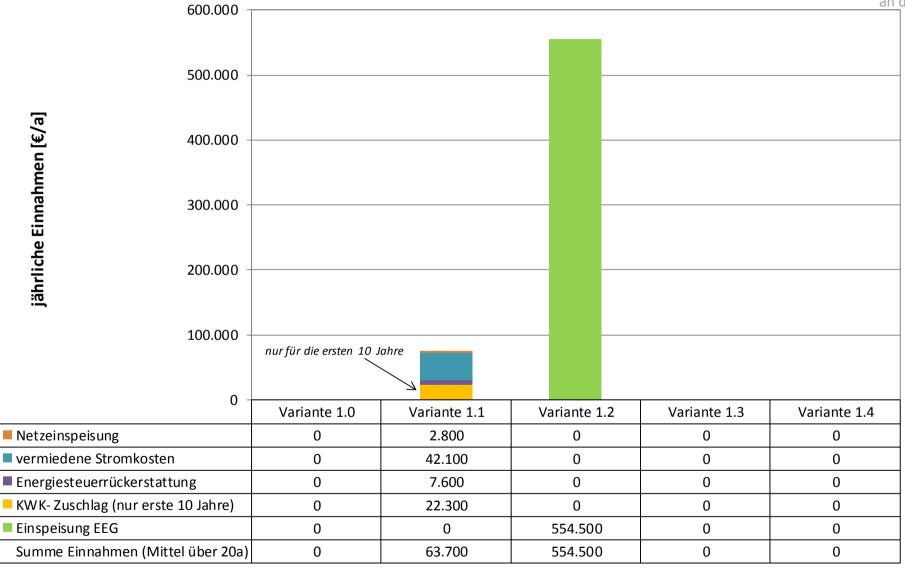
- 1. Allgemeine Daten zum Betrachtungsgebiet mit Erfassung der energetischen Ausgangssituation
- 2. Die Potentiale an Erneuerbaren Energien im Gemeindegebiet
- 3. Erstellung eines Wärmekatasters im Gemeindegebiet
- 4. Ausarbeitung von potentiellen Wärmeverbundmöglichkeiten mit entsprechenden thermischen Jahresdauerlinien
- 5. Wirtschaftlichkeitsbetrachtung verschiedener Energieversorgungsvarianten
- 6. CO₂- Bilanz / Fördermöglichkeiten
- 7. Zusammenfassung

Investitionskostenprognose der betrachteten Varianten 1.x

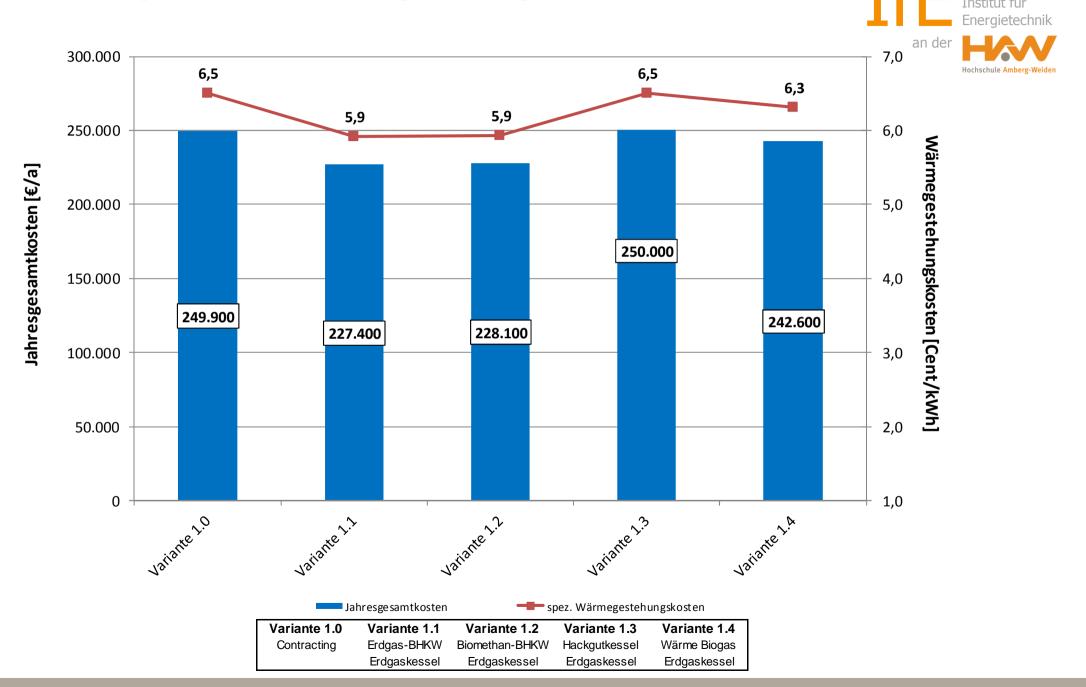


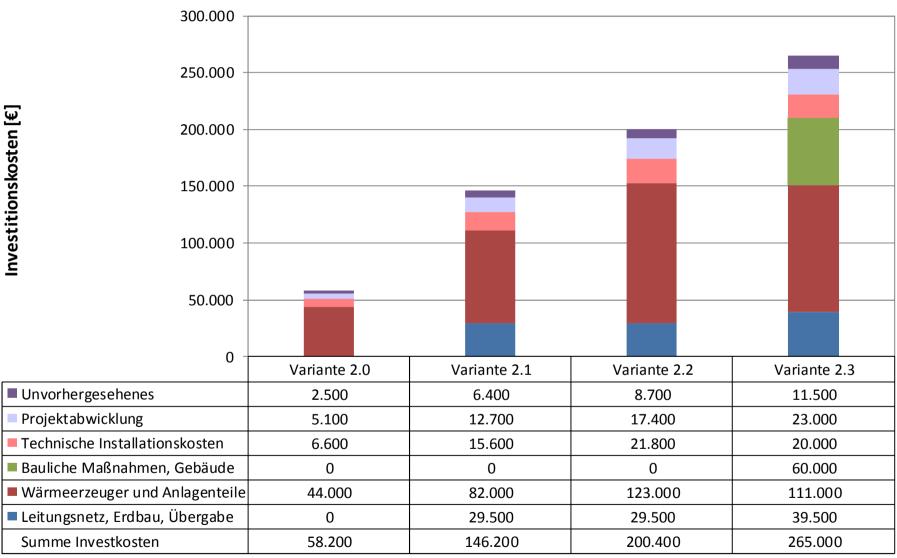
Variante 1.0 Variante 1.1		Variante 1.1	Variante 1.2	Variante 1.3	Variante 1.4	
	Contracting	Erdgas-BHKW	Biomethan-BHKW	Hackgutkessel	Wärme Biogas	
		Erdgaskessel	Erdgaskessel	Erdgaskessel	Erdgaskessel	

Die jährlichen Ausgaben der betrachteten Varianten 1.x



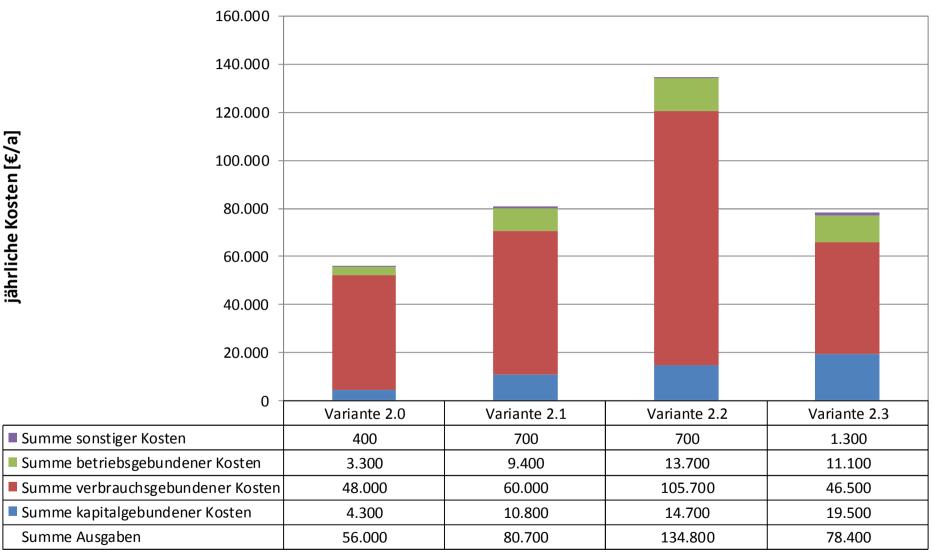
Variante 1.0 Variante 1.1		Variante 1.1	Variante 1.2	Variante 1.3	Variante 1.4	
	Contracting	Erdgas-BHKW	Biomethan-BHKW	Hackgutkessel	Wärme Biogas	
		Erdgaskessel	Erdgaskessel	Erdgaskessel	Erdgaskessel	


Die jährlichen Einnahmen der betrachteten Varianten 1.x


Variante 1.0 Variante 1.1		Variante 1.2	Variante 1.3	Variante 1.4	
	Contracting	Erdgas-BHKW	Biomethan-BHKW	Hackgutkessel	Wärme Biogas
		Erdgaskessel	Erdgaskessel	Erdgaskessel	Erdgaskessel

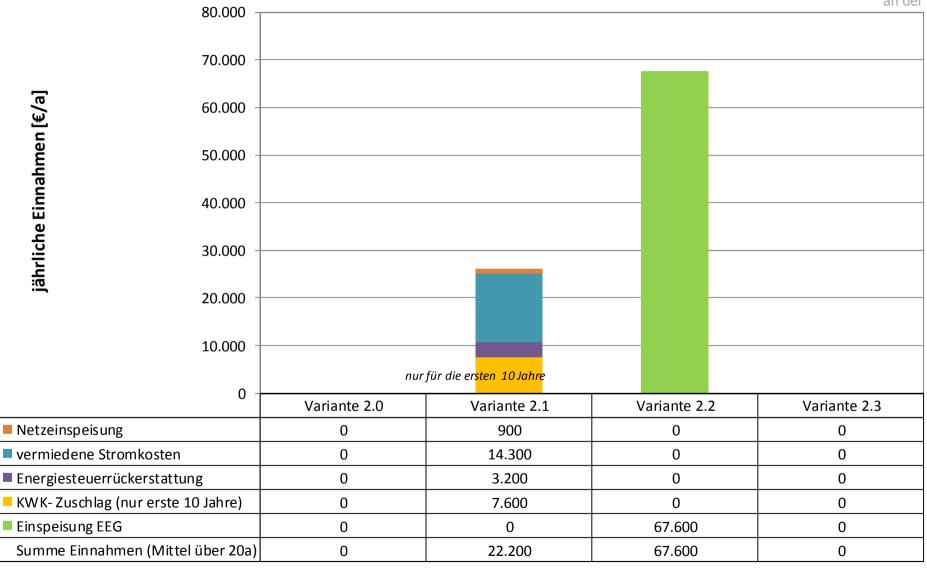
Die Jahresgesamt- und Wärmegestehungskosten der Varianten 1.x T-

Investitionskostenprognose der betrachteten Varianten 2.x



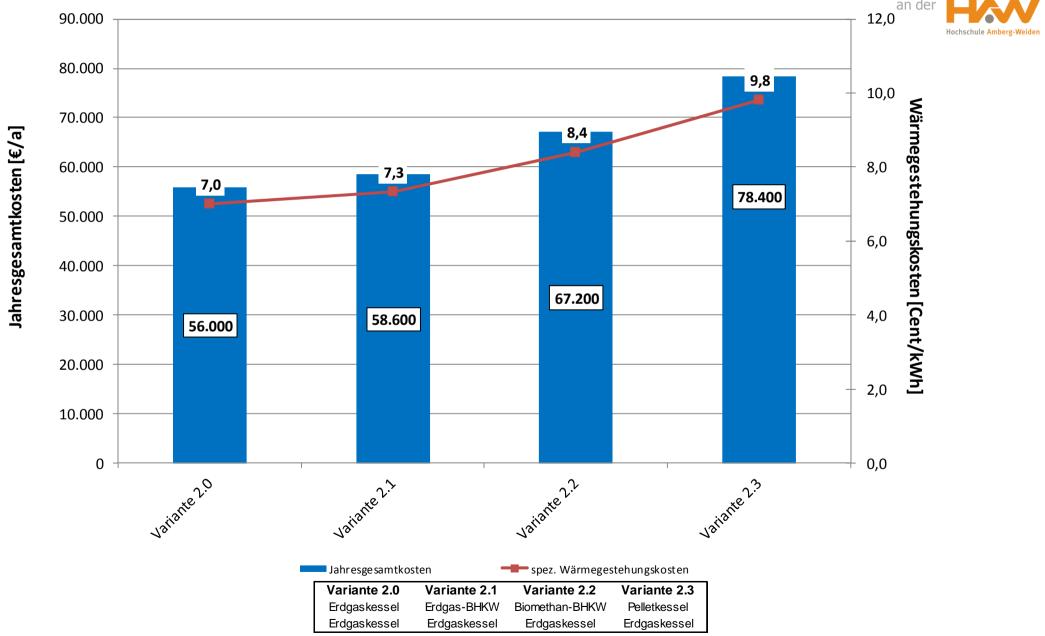
Variante 2.0			Variante 2.3
Erdgaskessel	Erdgas-BHKW	Biomethan-BHKW	Pelletkessel
Erdgaskessel	Erdgaskessel	Erdgaskessel	Erdgaskessel

Die jährlichen Ausgaben der betrachteten Varianten 2.x



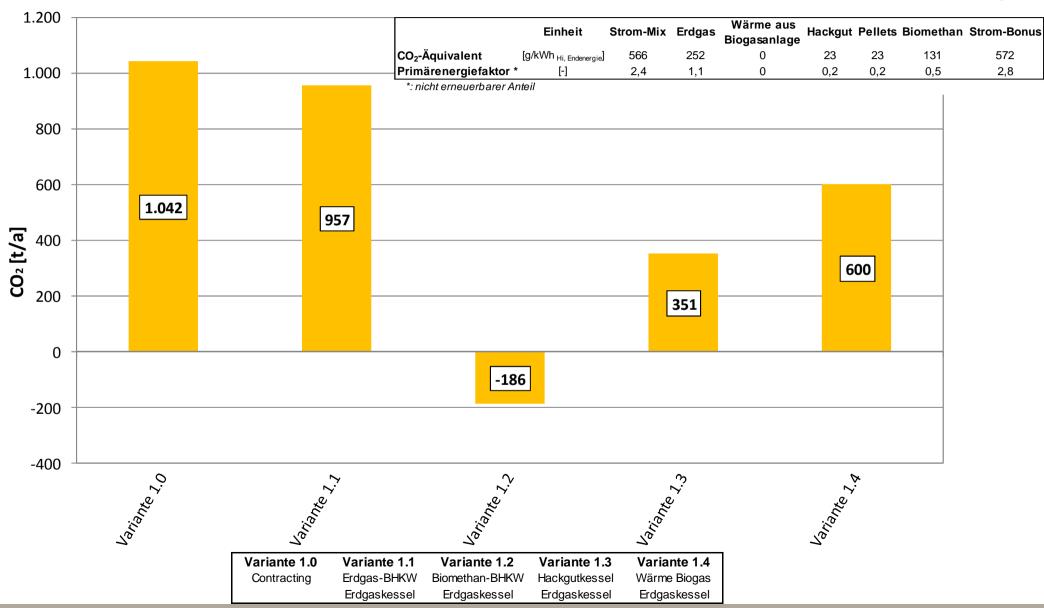
Variante 2.0	Variante 2.1	Variante 2.2	Variante 2.3
Erdgaskessel	Erdgas-BHKW	Biomethan-BHKW	Pelletkessel
Erdgaskessel	Erdgaskessel	Erdgaskessel	Erdgaskessel

Die jährlichen Einnahmen der betrachteten Varianten 2.x



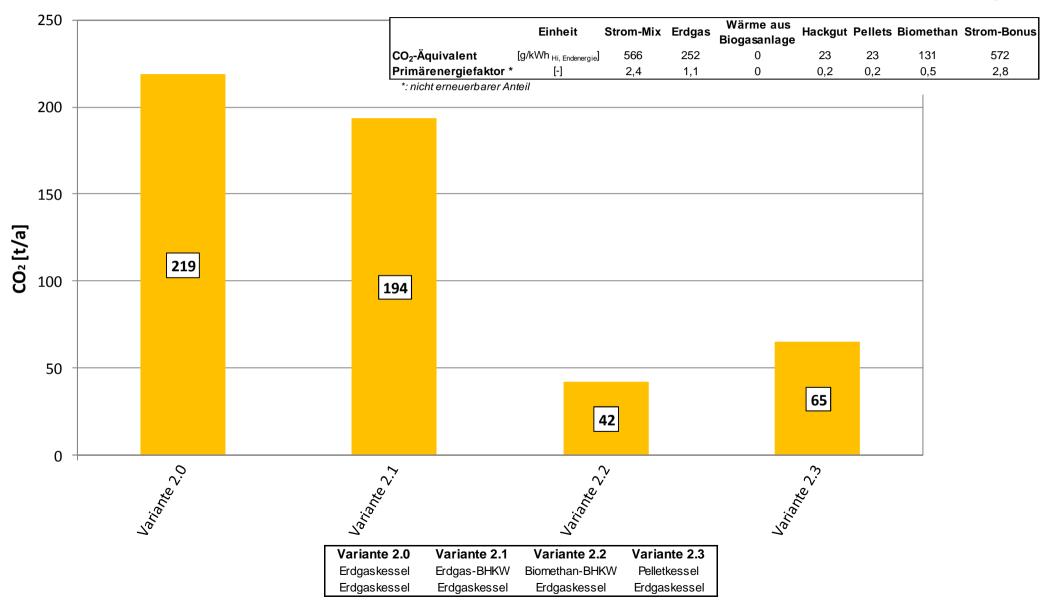
Variante 2.0		Variante 2.1	Variante 2.2	Variante 2.3
	Erdgaskessel	Erdgas-BHKW	Biomethan-BHKW	Pelletkessel
	Erdgaskessel	Erdgaskessel	Erdgaskessel	Erdgaskessel

Die Jahresgesamt- und Wärmegestehungskosten der Varianten 2.x T4


Inhaltsübersicht

- 1. Allgemeine Daten zum Betrachtungsgebiet mit Erfassung der energetischen Ausgangssituation
- 2. Die Potentiale an Erneuerbaren Energien im Gemeindegebiet
- 3. Erstellung eines Wärmekatasters im Gemeindegebiet
- 4. Ausarbeitung von potentiellen Wärmeverbundmöglichkeiten mit entsprechenden thermischen Jahresdauerlinien
- 5. Wirtschaftlichkeitsbetrachtung verschiedener Energieversorgungsvarianten
- 6. CO₂- Bilanz / Fördermöglichkeiten
- 7. Zusammenfassung

Die CO₂- Bilanz der untersuchten Versorgungsvarianten 1.x


CO₂-Bilanz der Wärmeversorgungsvarianten 1.x

Die CO₂- Bilanz der untersuchten Versorgungsvarianten 2.x

CO₂-Bilanz der Wärmeversorgungsvarianten 2.x

Inhaltsübersicht

- 1. Allgemeine Daten zum Betrachtungsgebiet mit Erfassung der energetischen Ausgangssituation
- 2. Die Potentiale an Erneuerbaren Energien im Gemeindegebiet
- 3. Erstellung eines Wärmekatasters im Gemeindegebiet
- 4. Ausarbeitung von potentiellen Wärmeverbundmöglichkeiten mit entsprechenden thermischen Jahresdauerlinien
- 5. Wirtschaftlichkeitsbetrachtung verschiedener Energieversorgungsvarianten
- 6. CO₂- Bilanz / Fördermöglichkeiten
- 7. Zusammenfassung

Zusammenfassung der Wirtschaftlichkeitsbetrachtung

	Wärmenetz	"Franken	lagune"		
Zusammenfassung	Variante 1.0	/ariante 1.1	Variante 1.2	Variante 1.3	Variante 1.4
	Contracting	Erdgas- BHKW	Biomethan-BHKW	Hackgut kessel	Wärme Biogasanlage
		Erdgaskessel	Erdgaskessel	Erdgaskessel	Erdgaskessel
Investkostenprognose [€]					
Gesamtinvestkosten	0	232.500	526.900	700.700	748.500
Projektabwicklung	0	23.300	52.700	70.100	74.900
Unvorhergesehenes	0	11.600	26.300	35.000	37.400
Summe Investkosten	0	267.400	605.900	805.800	860.800
jährliche Ausgaben [€/a]		40.700	44.000	50,000	00 000
Summe kapitalgebundener Kosten	0	19.700	44.600	59.300	63.300
Summe verbrauchsgebundener Kosten	249.900	247.700	671.300	153.400	149.500
Summe betriebsgebundener Kosten	0	22.500	65.000	33.100	24.900
Summe sonstiger Kosten Summe Ausgaben	249.900	1.200 291.000	1.700 782.600	4.200 250.000	4.900 242.600
Summe Ausgaben	249.900	291.000	762.000	250.000	242.000
jährliche Einnahmen [€/a]					
Summe Einnahmen	0	63.700	554.500	0	0
Jahresgesamtkosten [€/a] (gerundet)	249.900	227.400	228.100	250.000	242.600
spez. Wärmegestehungskosten [Ct/kWh]	6,5	5,9	5,9	6,5	6,3
CO ₂ -Bilanz [to/a]	1.042	957	-186	351	600
spez. Wärmegestehungskosten [Ct/kWh] unter Berücksichtigung möglicher Förderungen	6,5	5,9	5,9	6,2	5,7

Zusammenfassung der Wirtschaftlichkeitsbetrachtung

	Wärmenetz	"Schule Sa	assanfahrt"	
Zusammenfassung	Variante 2.0	Variante 2.1	Variante 2.2	Variante 2.3
	Erdgaskessel	Erdgas- BHKW	Biomethan-BHKW	Pelletkessel
	Erdgaskessel	Erdgaskessel	Erdgaskessel	Erdgaskessel
Investkostenprognose [€]				
Gesamtinvestkosten	50.600	127.100	174.300	230.500
Projektabwicklung	5.100	12.700	17.400	23.000
Unvorhergesehenes	2.500	6.400	8.700	11.500
Summe Investkosten	58.200	146.200	200.400	265.000
jährliche Ausgaben [€/a]				
Summe kapitalgebundener Kosten	4.300	10.800	14.700	19.500
Summe verbrauchsgebundener Kosten	48.000	60.000	105.700	46.500
Summe betriebsgebundener Kosten	3.300	9.400	13.700	11.100
Summe sonstiger Kosten	400	700	700	1.300
Summe Ausgaben	56.000	80.700	134.800	78.400
jährliche Einnahmen [€/a] Summe Einnahmen		22 200	67.600	0
Summe Einnanmen	0	22.200	67.600	0
Jahresgesamtkosten [€/a] (gerundet)	56.000	58.600	67.200	78.400
spez. Wärmegestehungskosten [Ct/kWh]	7,0	7,3	8,4	9,8
1.	•	•	•	·
CO ₂ -Bilanz [to/a]	219	194	42	65
spez. Wärmegestehungskosten [Ct/kWh] unter Berücksichtigung möglicher Förderungen	7,0	7,3	8,2	9,4

Vielen Dank für Ihre Aufmerksamkeit!